
Automatic Compartmentalization of Distributed Protocols
Graduate

Abstract
Promises of better cost and scalability have driven the migra-
tion of systems to the cloud. Once systems become distributed,
they must handle complications resulting from asynchrony,
inconsistency, and failures. To resolve these complications,
consensus protocols like Paxos [14] have been incorporated
into distributed systems [6, 7, 13]. Consensus protocols are
inherently complex and difficult to reason about, and they
often become bottlenecks in practice. This has driven the
design of scalable protocol variants [8, 10, 15, 16]. Unfortu-
nately, these variants are even more intricate and often error-
ridden [1, 12, 17, 18, 20].

Recent results suggest a simpler path to high-throughput con-
sensus. Compartmentalized Paxos [21] “decouples” a com-
plex consensus protocol into small, independent software
modules that can be individually scaled. Then it identifies
modules that are bottlenecks to throughput, and scales them
up when possible. Comparmentalizing correctly in the con-
text of a complex protocol like MultiPaxos [21] (or even
more complex, Mencius [22]) required significant insight into
their’inner workings.

Compartmentalized Paxos is Yet Another Consensus Protocol
(YACP) that needs to be implemented and deployed. The goal
of our work is to stop inventing protocols, and instead sys-
tematize the scalability ideas from Compartmentalized Paxos
so they can be applied automatically to a wide variety of
complex protocols, including transactional concurrency con-
trol, BFT, etc. Our vision of Automatic Compartmentalization
proposes to increase throughput while preserving correctness
and liveness, expanding the impact of compartmentalization
to a broad range of programs. The end result, we believe, will
be distributed systems that are both more elastic and more
reliable.

—

There are two dimensions to the task of Automatic Compart-
mentalization: as a building block, we need to classify the
scaling potential of individual modules. More holistically, we
need to refactor monolithic code into modules that maximize
the potential for scaling.

Our work distills from Compartmentalized Paxos three classes
of modules in distributed protocols and techniques to classify
them:

Embarassingly parallel modules can be scaled up and down
arbitrarily. For example, relay nodes in PigPaxos [8] receive
messages from the Paxos leader and broadcast them to fol-

lowers; the number and choice of relay nodes is immaterial
to correctness. We can classify modules for embarrassing
parallelism via monotonicity analysis, as per the CALM theo-
rem [11].

Key-partitioned modules can be partitioned and scaled
based on a key in the request payload. For example, Com-
partmentalized Paxos shards acceptors into groups based on
log index number; each group can execute commands in-
dependently of groups for other log indices. Independence
between keys in a collection can be classified via functional
dependency analysis [2].

Fundamentally sequential (single-threaded) modules can-
not be scaled. These modules need to be small to avoid becom-
ing a bottleneck. For example, the total-ordering of individual
requests in Paxos is fundamentally unscalable. To maximize
throughput, Corfu [5] singles out an individual sequencer
whose sole purpose is to perform total-ordering.

To perform these analyses automatically, we require a DSL
that allows us to automatically classify and refactor protocols.
Logic programming [3, 4, 9] is a good fit because monotonic-
ity and functional dependencies can be extracted easily [2, 3].

The challenge of refactoring a program into modules amenable
to classifying remains. Typically, protocols are not factored
based on their scalable modules; they are factored based on
semantic units. For example, MultiPaxos has proposers and
acceptors, but Compartmentalized Paxos refactors those mod-
ules for scalability. Hence we desire a language that allows
code organization based on program semantics, while expos-
ing features required for Automatic Compartmentalization.
We plan to build on Dedalus [4] and Bloom [3] to include for-
malisms of physical machines and their (potentially dynamic)
mapping to program modules.

Compartmentalization attempts to ensure correct behavior
while scaling, but there are nuances that require further in-
vestigation. For example, protocol specifications like Paxos
have semantic agents (e.g. a “proposer”) that could be refac-
tored into modules for scalability. After compartmentaliza-
tion, these agents can exhibit partial failure of a module, and
not the fail-stop behavior per agent as assumed in protocol
correctness proofs [19]. In general, there are constraints on
when certain optimization techniques can be applied, which
requires further investigation into their formalisms.

Merely knowing how to apply optimizations is not enough;
the optimizer must choose which portion of the program to
optimize, given constraints and workloads. For example, Com-

1



partmentalized Paxos optimizes message replication at the
expense of leader election, because it assumes that leader fail-
ures are rare. Profiling, bottleneck analysis, code generation,
and automatic reconfiguration are all significant challenges.

We aim to ultimately combine these systems into a full
pipeline such that users can write a distributed protocol, de-
ployed with our system, that optimizes and redeploys on-the-
fly to provide the best performance and cost for any given
workload.

Preliminary results. We are currently working on classifying
and refactoring programs implemented in Bloom. Our current
analysis is able to arrive at Compartmentalized Paxos by man-
ually applying individual steps of classifying and refactoring
to a Bloom implementation of MultiPaxos. We are working
to automate that process next.

References
[1] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla,

and J. Martin. Revisiting fast practical byzantine fault
tolerance. CoRR, abs/1712.01367, 2017.

[2] P. Alvaro, N. Conway, J. M. Hellerstein, and D. Maier.
Blazes: Coordination analysis and placement for dis-
tributed programs. ACM Trans. Database Syst., 42(4),
Oct. 2017.

[3] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Mar-
czak. Consistency analysis in bloom: a CALM and
collected approach. In Fifth Biennial Conference on
Innovative Data Systems Research, CIDR 2011, Asilo-
mar, CA, USA, January 9-12, 2011, Online Proceedings,
pages 249–260, 2011.

[4] P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein,
D. Maier, and R. Sears. Dedalus: Datalog in time and
space. In O. de Moor, G. Gottlob, T. Furche, and A. Sell-
ers, editors, Datalog Reloaded, pages 262–281, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[5] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wob-
bler, M. Wei, and J. D. Davis. CORFU: A shared log
design for flash clusters. In 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
12), pages 1–14, San Jose, CA, Apr. 2012. USENIX
Association.

[6] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes. Borg, omega, and kubernetes. Queue,
14(1):70–93, Jan. 2016.

[7] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the
7th Symposium on Operating Systems Design and Im-
plementation, OSDI ’06, page 335–350, USA, 2006.
USENIX Association.

[8] A. Charapko, A. Ailijiang, and M. Demirbas. PigPaxos:
Devouring the communication bottlenecks in distributed
consensus. In Proceedings of the 2021 International
Conference on Management of Data. ACM, June 2021.

[9] E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387, June 1970.

[10] C. Ding, D. Chu, E. Zhao, X. Li, L. Alvisi, and R. V.
Renesse. Scalog: Seamless reconfiguration and total
order in a scalable shared log. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 325–338, Santa Clara, CA, Feb. 2020.
USENIX Association.

[11] J. M. Hellerstein and P. Alvaro. Keeping CALM. Com-
munications of the ACM, 63(9):72–81, Aug. 2020.

[12] H. Howard and I. Abraham. Raft does not guarantee
liveness in the face of network faults. https://dece
ntralizedthoughts.github.io/2020-12-12-raf
t-liveness-full-omission/, Dec 2020.

[13] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale sys-
tems. In 2010 USENIX Annual Technical Conference
(USENIX ATC 10). USENIX Association, June 2010.

[14] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[15] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building efficient replicated state machines for wans. In
8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 08), San Diego, CA, Dec.
2008. USENIX Association.

[16] I. Moraru, D. G. Andersen, and M. Kaminsky. There is
more consensus in egalitarian parliaments. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles. ACM, Nov. 2013.

[17] D. Ongaro. Consensus : bridging theory and practice.
PhD thesis, Stanford University, 2014.

[18] P. Sutra. On the correctness of egalitarian paxos. Infor-
mation Processing Letters, 156:105901, 2020.

[19] R. Van Renesse and D. Altinbuken. Paxos made moder-
ately complex. ACM Comput. Surv., 47(3), Feb. 2015.

[20] M. Whittaker. mwhittaker/craq_bug. https://github
.com/mwhittaker/craq_bug, Jun 2020.

[21] M. Whittaker, A. Ailijiang, A. Charapko, M. Demirbas,
N. Giridharan, J. M. Hellerstein, H. Howard, I. Sto-
ica, and A. Szekeres. Scaling replicated state ma-
chines with compartmentalization. arXiv preprint
arXiv:2012.15762, 2020.

2

https://decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/
https://decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/
https://decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/
https://github.com/mwhittaker/craq_bug
https://github.com/mwhittaker/craq_bug


[22] M. Whittaker, A. Ailijiang, A. Charapko, M. Demirbas,
N. Giridharan, J. M. Hellerstein, H. Howard, I. Stoica,
and A. Szekeres. Scaling replicated state machines with
compartmentalization [technical report], 2021.

3


